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Marginal distribution of an arbitrary square submatrix of the 
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Received 15 June 1984 

Abstract. In a previous paper, the marginal distribution of one and two-dimensional 
submatrices of the S-matrix was obtained, assuming Dyson’s measure for the full n- 
dimensional S (Dyson’s measure is the invariant volume element for unitary and symmetric 
matrices). In the present paper we generalise the previous results and obtain the distribution 
of a square submatrix of arbitrary dimensionality m 5 n/2. 

1. Introduction 

In a previous paper (Pereyra and Mello 1983) the marginal distribution of individual 
S-matrix elements or groups of them was discussed, assuming Dyson’s measure (Dyson 
1962) for the full S-matrix. In particular, the distribution was given for the matrix 
element SI, and the group of four matrix elements contained in a 2 x 2  block along 
the diagonal, i.e. (:;; :;;). The procedure used there was sufficiently cumbersome that 
the treatment of a block with dimension greater than two was prohibitive. 

In the present paper we present a different procedure which does permit the explicit 
evaluation of the joint marginal distribution of the matrix elements contained in a 
square submatrix (lying along the diagonal) with arbitrary dimensionality m (as long 
as m S n/2, as we shall see). 

As was mentioned by Pereyra and Mello (1983), the motivation for this problem 
was a series of recent attempts to develop a statistical theory of nuclear reactions doing 
statistics directly on the S-matrix, i.e., by proposing a measure in the space of unitary 
and symmetric matrices (Mello 1979, Mello and Seligman 1980, Mello et a1 1984). A 
very important concept in those attempts is that of Dyson’s measures d p (  S ) ,  which 
is the invariant volume element for unitary and symmetric matrices (Dyson 1962, Hua 
1963). The notion of invariance is with respect to the automorphism (U,,, unitary) 

s -$ s’= u;su,, (1.1) 

that maps the space of unitary and symmetric matrices into itself. Intuitively, we can 
say that Dyson’s measure assigns equal a priori probability to all unitary and symmetric 
matrices S of a given order n. 

To be more specific about the problem to be solved in the present paper, let us 
call s the m x m submatrix of the n-dimensional S, the latter being distributed according 
to dp (S) .  

i. This work was supported in part by the National Science Foundation under grant PHY 8204302. 
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It is well known (Dyson 1962, Hua 1963) that we can write any unitary and 
symmetric matrix S as 

s =  UTU, (1.2) 

where U is unitary. If U is distributed according to the invariant or Haar measure 
(Hua 1962) of the unitary group U ( n ) ,  it follows that S is distributed according to 
d u ( S ) .  

Similarly, we can write the m x m submatrix s as 

where U is an n x m matrix, whose columns are the first m columns of U. Let us write 
these columns as m orthonormal vectors, expressed in real and imaginary parts as 

U, = x, + iy,, a = 1, . . . , m. (1.4) 

This is schematically indicated in figure 1 

m j 3  8 UT . -1-l U 

Figure 1. Schematic representation of the S-matrix, indicating the m x n matrix U, which 
provides the m x m submatrix s. 

It is also convenient to consider explicitly the real and imaginary parts of the 
elements of s (which are also a part of S ) ,  defining them as XI, and Y,,, i.e., 

SI, = X,, + i Yy. (1 3)  

We now define the joint differential probability of the set of variables {Xt, ,  Y,,} as 

where pa (written below as p o ( s ) )  is the probability density, i.e., the probability of 
finding XI, ,  . . . , Y,, in a unit interval about X I 1 , .  . . , Y,,,,, The index 0 is a reminder 
that the total S is distributed according to the invariant volume element. 

Since the only constraints that Haar’s measure imposes on the vectors U, is that 
they be orthonormal, we can symbolically write p o ( s )  as 

po(s)=S(s-sT) S ( S - U ~ U )  S ( I - u t u )  du. ( 1 . 7 4  I 
In (1.7a) we have used relation (1.3) between s and U as well as the symmetry 

of s. 
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More explicitly, by using equations (1.6) and (1.5) we write 

m m 

(cl=! n a(1-Xi-Y:) I = a < b  n s ( x o ' x b + y a ' y b )  s ( x a ' y b - y a * x b ) ) ,  

(1.7b) 

where the dots indicate scalar products between n-dimensional vectors and 

x', = x, x,, Y i = Y a - Y 5 .  

We prove in appendix 1 that, if m n/2,  there are enough integrations in (1.7) to 
eliminate all of the &functions (except, of course, for 6(s - sT)). We shall assume this 
limitation on m in what follows. 

Our main goal in this paper is the exact evaluation of the expression (1.7). We 
shall show in the following sections that the result takes the particularly simple form 

po( s )aS( s  - s')[det(I-s'~)]'"-"'-"/~. (1.8) 

For the special cases of m = 1 , 2 ,  equation (1.8) reduces to the results found by Pereyra 
and Mello (1983). 

Section 2 provides a proof that po( s) is invariant under the transformation s = u ~ s ' v o ,  
where U,, is an m x m unitary matrix. 

Section 3 uses this invariance property to provide an explicit evaluation of the 
distribution p o ( s )  for arbitrary m S n/2 .  Finally, 0 4 considers the form of p o ( s )  in the 
limit of n >> m and in this limit uses the distribution for the evaluation of the average 
value of  IS,,^'. 

2. Invariance of po(s)  

In this section we prove that the p o ( s )  of (1.7) remains invariant if s is replaced by 4 
related to s through the transformation 

where uo is an m x m unitary matrix. 
Writing 

s = UTU, s'= CTG, 
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as in equation (1,3), the transformation (2.1) is equivalent to 

U = U U O .  (2.3) 

We recall that U = x + iy consists of m orthonormal vectors 

U, = x, + iy, ( 2 . 4 ~ )  

and similarly 

(2.4b) 

First of all, from appendix 2, example 1, it follows that the volume element appearing 

Secondly, we analyse the &functions appearing in the curly bracket of (1.7b), 

- - -  
U, = x, + iy,. 

in (1.76) is invariant under the transformation (2.3). 

indicated by 6 (  s - u T u )  in ( 1 . 7 ~ ) .  The argument of the &function transforms as 

s - UTU = U;( s’ - GTG) U@ (2.5) 

Defining the matrix on the LHS as w and the similar matrix on the RHS as 4, we have 

(2.6) T -  w = U O W U O .  

Since (2.6) is linear and homogeneous we have the following relation between S- 
functions of w and of the transformed G: 

3(Re w a b )  a ( Im w a b ) (  n d(Re w a b )  d( Im @ a b ) )  
a s  b a s h  

Applying the result of appendix 2, example 2, we find that the volume elements 
appearing in (2.7) are equal, from which it follows that the products of the &functions 
are equal. In the notation of ( 1 . 7 ~ )  this means that we can symbolically write 

6 ( w )  = 6 ( G ) ,  ( 2 . 7 ~ )  

or 

8 ( s - u T u ) = S ( S - i i T G ) .  (2.7b) 

By a similar argument we prove the invariance of the &functions appearing in 
front of the integral in (1.7b), i.e. of S ( s  -sT) in ( 1 . 7 ~ ) .  

Finally, we analyse the S-functions appearing in the square bracket of (1.7b), 
indicated as 6 ( 1 -  U + U )  in (1.70). Defining the hermitian matrix h = I - u tu ,  (2.3) 
implies the transformation 

h = uOhuo. (2.8) 
Since (2.8) is linear and homogeneous we have the relation between S-functions, similar 
to equation (2.7), 

t -  
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We now apply the result of appendix 2, example 3 :  the volume elements appearing 
in (2.9) are equal, so that equating the S-functions we can write symbolically 

6 ( h )  = 6 ( K )  

i 3 ( 1 - u t u ) = S ( z - i i t i ) .  
or 

In conclusion, we can write (1.7a) as 

pO(s)  = S ( S  -sT) 6 ( s -  U*U) S ( 1 -  U + U )  du I 
i = 6 (  s’ - JT) 6(  s’- GTu’) S( I - ii+ii) du’ = pa( s’), 

which proves the invariance of pa( s).  

(2.10a) 

(2.10b) 

3. Evaluation of the distribution p,(s)  of (1.7) 

We have proved in 0 2 that pa( s) remains invariant if s is subject to the transformation 
(2.1). Therefore, if we need pa for a certain s, we may look for a convenient vo that 
takes s into an s’ where the calculation of po is simpler, and then apply the invariance 
relation p o ( s )  = pa(;). In particular, we can always find vo so that s is diagonal and 
real (Engelbrecht and Weidenmuller 1973). As we shall see, this choice considerably 
simplifies the calculation of equation (1.7). We thus evaluate (1.76) for the case in 
which only the diagonal elements X4, ( a  = 1, . . . , m) may be different from zero 
(because of the symmetry S-functions on the RHS of (1.76) we must still keep explicit 
reference to the elements Sa, a > b). For simplicity, we shall drop the tilde from j in 
the analysis that fqllows. The differential volume elements in (1.7b) can be expressed 
in hyperspherical coordinates, to give 

POa n 
4 > b  

The &functions in the first square bracket imply that x’, = ( 1  +X4,)/2, y’, = 
( 1 - X4,)/2; those in the second square bracket imply that x, - xb = y4 - yb = x4. yb = 
y4 - xb = 0. Therefore 

m 

4 = l  
x n x:-~ d(x’,) dah“’ y z - 2  d(y2) dRhy’ (3.2) 
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The integrals over the magnitudes x ’ , ,y :  can be done immediately, leaving only 
= x a / x a ,  j a  = y a / y a  to indicate the integrals over the solid angles. With the notation 

unit vectors, we have 

X n [6(% &) 8 ( j a  * $ b )  8 ( i a  j b )  8 ( j a  * i b ) ]  n [ d n y ’  dflp)].  (3.3) 

The remaining integral over the solid angles is a constant, independent of the 
argument of po.  This is the great simplification that we achieve with the special choice 
of s that we have made. We thus have 

a < b  a 

POa n [ 6 ( x a b )  Yab)] 
a >  b 

x ( n  a ( 1  - x : a ) ( n - 3 ) / 2 /  a , c b  n [(l - X ‘ , J ( l  -x ib) ] ) .  (3.4) 

Using the identity 
m m n ( C O % ) =  n 

I = a c b  a = l  
(3.5) 

we can then write 

a > b  a = l  

(3.6) 

It is clear that no( 1 - X’,,)  can be written in a form which is invariant under the 
transformation (2.1) as det(Z - sts). We thus reach the final result for the distribution 
po( s)  quoted in equation (1.8) 

po(s )a  6 ( s  -sT)[det(Z - S ~ S ) ] ( ~ - ~ ~ - ’ ) ’ ~ .  (3 .7)  

4. The distribution po(s)  for n >> m 

We can write equation (3 .7 )  as 

po ( s )a8 ( s - sT)  exp[f(n-2m- 1 )  Tr ln(Z-sts)]  

(4.1) 

where the series is convergent since s is a subunitary matrix. 
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In the limit n >> m, expression (4.1) is dominated by the leading term, so that 

po ( s )a6 ( s - sT)  exp[-fn Tr(sts)]. (4.2) 

Writing each of the matrix elements of s explicitly, we thus have 

or  

Thus, in the n >> m limit, the variables S,j  ( i  z j = 1, . . . , m) are distributed as 
independent zero-centred Gaussian variables. 

As an example, let us use the probability density given in equation (4.4) to evaluate 
the average value of ISabl2, i.e. ( I sab12)o ,  where the index 0 emphasises that the total 
S-matrix is distributed according to the invariant volume element. 

We find from (4.4) 

( ~ s a b ~ 2 ) O ~ ( ~  + 6 a b ) / n .  (4.5) 

This variance (but not the entire distribution) was obtained by Mello and  Seligman 
(1980) for arbitrary n as 

Further applications of the marginal distribution derived here have been made by 
Friedman and  Mello (1984). 
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Appendix 1. Proof that if m < n / 2 ,  the 6-functions in equation (1.76) can be 
eliminated 

Inside the integral (1.7b) there are m(m + 1 )  &functions containing s-matrix elements 
and m2 coming from the orthonormality of the u,’s. We thus have 2m2+ m &functions 
and 2mn integrations, so that we obtain, at this stage, the inequality 

2m2+ m < 2mn, or m < n - t ,  ( A l . l )  

in order to eliminate the &functions. However, we shall show in what follows that 
not all of the 2mn integrations contribute to eliminate the &functions. To see this, we 
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will find it advantageous to express the vectors x, and y ,  in spherical coordinates: 

x,: x,, e; ) ,  . . . , e: - ' ) ;  a = l ,  . . . ,  m ( A 1 . 2 ~ )  

a =  I , . .  ., m (Al.2b) ( 1 )  ( - 1 )  Y a :  Y a Q a  , . * * * ( P a  ; 

with the corresponding volume elements 

d(nlx. = x;-l Sinn-2 0'1) , . . . sin @-" dx, de',". . . de:-" 
d(")y, = y z - l  sin"-2 q y )  . . . sin 

( A 1 . 3 ~ )  

(Al.3 b) 

Since the integrand in (1.7b) depends only on the scalar products of the vector 
x,, yb (a,  b = 1, . . . , m ) ,  we can choose the coordinate system so that x, has only one 
component different from zero, y ,  only two, etc. For a given m, suppose that we choose 
n 2 2m. We have: 

dy, dq',l ', . . dqp-" .  

0 0 . .  .) 

0 O...) 
0 0 .)  

0 O...) 

0 0 . . )  

y, =(~,J(cos~~', sin vx'cos PE', sinv2'sinc',2'cosvE1, . s i n  9:' sinv~m-2"osv',2m-", sinv;) sinv',2m-'),0 

(A1.4) 

Of all the variables appearing in (A1.2), only those indicated explicitly in (A1.4) appear 
in the integrand in (1.76). In (A1.4) we have 2m radial variables; associated with the 
various unit vectors, we have (2m - 1 )  independent angular variables in the first 
component (i.e., cp;", e: ' ) ,  . . . , e:), pi ' ) ,  (2m - 2) additional independent variables in 
the second one, etc, zero new ones in the 2mth component, which is the last component 
of y ,  that is different from zero. Altogether we then have 

2m + [ ( 2 m  - I ) +  (2m -2) +. . . + 1 +o] = 2m2+ m ( A I S )  

variables. Therefore, out of the 2mn integrations, only 2m2+m are 'effective' in 
eliminating the &functions; the number of &functions is precisely 2m2+ m, according 
to what was stated before equation (A1.l). For the same m, if we had n = 2m - 1, the 
last component of y ,  in (A1.4) would not be present; cp2,-' would not be necessary 
and the number of variables would be one less than before, whereas the number of 
&functions is still the same; in this case, one &function still survives. This proves 
our statement that n must be at least equal to 2m to get rid of all the &functions. 

Appendix 2. Invariance property of the volume elements 

We consider in this appendix the transformation properties of some of the volume 
elements used in this paper. 

( 1 )  Let z be an n x m complex matrix 

z = x + iy, (A2.1) 

which we subject to the transformation 

z = zug, (A2.2) 
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where uo is a unitary m x m matrix and 

;=?+i f .  

We represent (A2.2) as 

m 

nE 
m m  

We now prove the invariance of the volume element 
m n  m n  

b = l  a = l  b = l  a = l  

Writing uo in terms of its real and imaginary parts 

uo = 5 + iv, 

(A2.2) gives 

which can be arranged in matrix form as 

m m  

n x  y = 

~ 

m m  

The volume elements are then related through 

The determinant in (A2.9) can be calculated as 

5 1 7  
-77 5 -77 5 

= Idet( f T f +  $7)  f T 7 7  - 77'5 
sT5- 5'7 qT17 + 5'5 

=Idet(' o z  ' ) ) I ' ' *=I ,  

433 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 

( A 2 . 7 ~ )  

(A2.76) 

(A2.8) 

(A2.9) 

(A2.10) 
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where we have used the unitarity of vo 

Insertion of (A2.10) in (A2.9) proves our statement (A2.5). 
(2) Let s be an m x m complex symmetric matrix 

s = X + i Y ,  (A2.12) 

which we subject to the transformation 

(A2.13) T -  s = uosuo, 

where uo is a unitary m x m matrix and 

5 = 2 + i i? (A2.14) 

We prove the invariance of the volume element 

n (dxab d Yob) = n (d2ab d ?ob). 
o s b  a s b  

(A2.15) 

Notice that since s and s' are symmetric, only the differentials of the independent 
matrix elements occur in (A2.15), and hence the condition a s b. This restriction did 
not occur in problem (1) of this appendix, in connection with (A2.5), so that the proof 
is now more difficult. 

We first write (A2.13) in components 

(A2.16) 

Suppose that U,, differs only infinitesimally from the unit matrix, so that 

v:b = 8ab + &ob, (A2.17) 

with E = - E + .  If we can prove our statement for this case, the proof for any unitary 
uo follows from exponentiation. 

To first order in E we can write (A2.16) as 

(A2.18) 

where the coefficient of the second term is of order E .  Writing E,, + Ebb = q,b = q k b  +iqEb 
we have 

xQb=(1+77bb)~Qb-v~b?Qb+ O ( & ) g c d +  c O ( & ) ? c d  (A2.19a) 
c s d  c h d  

(zQ.6) ( t Q , b )  

These relations can be put in matrix form, as shown in figure 2. 
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x4 b 

y4 b 

x 4 ' b '  

Y4'b' 

- 
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Figure 2. Schematic representation of the transformation (A2.19) relating {%ab, ?ab} to 
tx,,, Yob}. 

The matrix indicated is m( m + 1)-dimensional. The elements outside the blocks 
are of order E .  The Jacobian J we are looking for is the determinant of this matrix 
which, to first order in E ,  is given by 

J =  n (1+277bb)a1+2 c v b b  
4 s b  4 s b  

= 1 + 2 ( c  Tb4+ a < b  v b b )  

(A2.20) 

where E '  denotes Re E .  Since E is anti-hermitian, & L 4  = 0 and J = 1. This proves our 
statement. 

(3) Let h be an m x m hermitian matrix 

h = X + i Y ,  (A.2.21) 

which we subject to the transformation 

h = u$uo, (A.2.22) 

where uo is a unitary matrix and 

L = 2 + i i ?  (A.2.23) 

We prove the invariance of the volume element 

(A2.24) 

The proof is similar to that of example (2) above. With a uo differing infinitesimally 
from the unit matrix, as in equation (A2.17), (A2.22) gives 

(A2.25) 

Defining Tab = E ; ~ +  Ebb = Tbb+iT;b, equations (A2.19) and (A2.20) hold in the present 
case also. Again, & b 4  = 0 and J = 1, which proves the invariance (A2.24). 
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